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Correlating Polymer-Carbon Composite Sensor Response
with Molecular Descriptors
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We report a quantitative structure-activity relationships �QSAR� study using genetic function approximations to describe the
activities of a polymer-carbon composite chemical vapor sensor using a novel approach to selecting a molecular descriptor set. The
measured sensor responses are conductivity changes in polymer-carbon composite films upon exposure to target vapors at parts-
per-million concentrations. The descriptor set combines the basic analyte descriptor set commonly used in QSAR studies with
descriptors for sensing film-analyte interactions. The basic analyte descriptors are obtained using a combination of empirical and
semiempirical quantitative structure-property relationships methods. The descriptors for the sensing film-analyte interactions are
calculated using molecular modeling and simulation tools. A statistically validated QSAR model was developed for a training data
set consisting of 17 analyte molecules. The applicability of this model was also tested by predicting sensor activities for three test
analytes not considered in the training set.
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An electronic nose is an array of weakly specific chemical sen-
sors, controlled and analyzed electronically, which mimics the ac-
tion of the mammalian nose by recognizing patterns of response
using a data analysis algorithm.1-5 Polymer-carbon composite films
are used as conductometric sensors to detect organic vapors and
other environmental contaminants in the JPL Electronic Nose
�ENose�. There are also electronic noses using inorganic-based sen-
sors. Investigations involving polymer-only sensing films have been
performed using transducers such as surface acoustic wave
sensors,6,7 or mass-uptake sensors such as quartz crystal
microbalances.8 There have been several studies to elucidate and
predict the response of polymer-film-based sensors, primarily on
pure polymer films. Response in polymer films has been modeled
with linear solvation energy relationships �LSER�,6,7 and solubility
parameters,8 and good correlation has been obtained between calcu-
lated and measured responses. Previous efforts to model response in
polymer-carbon composites using molecular modeling9,10 have
taken into account only the effect of polymer-analyte interactions
and assumed that neither carbon nor analyte in the film plays a role
in sorbing analyte molecules or in contributing to the response of the
film. This model of sensor response may not represent a complete
picture of response in polymer-carbon composite sensors, especially
at concentrations of single to tens of parts-per-million �ppm� analyte
in air.

We have developed an approach which relates sensing material
and analyte to sensor activity by using experimental and theoretical
data. This approach takes into account the interactions between the
analyte and all of the components of the composite sensor. We have
used a multivariate statistical approach, quantitative structure-
activity relationship �QSAR�, to correlate sensor activity with
sensing film and analyte physical and chemical properties. This
technique has been used extensively in biochemical, medical, and
environmental remediation fields for drug-receptor screening and
in evaluating phenomenological models.11-17

Our goal is to develop a representative equation for each
polymer-carbon composite sensor in the JPL ENose sensing array.
The current QSAR studies for a single sensor in the JPL ENose will
have a limited training set. The small set size is a result of the
application of the JPL ENose; it is being developed as an event
monitor for spacecraft air and the set of target analytes is 20–25
compounds. This results in a limited training data set, unlike other
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QSAR studies for pharmaceutical and biological systems, where
training sets may include more than 100 compounds.

Statistical analysis methods available in QSAR include data
analysis and regression analysis methods.18 Methods such as princi-
pal component analysis �PCA� and cluster analysis methods �e.g.,
hierarchical cluster analysis� are included in data analysis. PCA aims
at representing large amounts of multidimensional data as a more
intuitive, low-dimensional representation. Cluster analysis methods
are aimed toward partitioning a data set into classes or categories
consisting of elements of comparable similarity. Regression methods
include simple and multiple linear regression methods �MLR�, step-
wise multiple linear regression using genetic function approximation
�GFA� methods, and partial least-square methods �PLS�.

GFA is a powerful method that has been used extensively to
investigate structure-activity relationships in biological data.14 The
advantage of GFA is that during evolution, thousands of candidate
models are created and tested, and only the superior models survive.
These models are then used as “parents” for the creation of the
next-generation candidate models. GFA can thus select the optimum
number of descriptors in linear regression analysis automatically; it
also constructs multiple linear regression models with any possible
combinations of terms �linear, higher order polynomials, splines,
and Gaussians�. The multiple models produced and subsequently
analyzed by GFA are in contrast to most statistical methods, such as
MLR and PLS, that focus on a single “best statistical” model.

The descriptors commonly used in QSAR studies describe intrin-
sic chemical and physical analyte properties. These descriptors are
predicted using empirical and semiempirical predictive methods
such as quantitative structure-property relationships �QSPR�. We
carried out some trial QSAR runs to determine the performance of
these default analyte descriptors to describe the sensor activity. Al-
though the intrinsic analyte descriptors provide a statistically signifi-
cant fit, we were concerned that the default descriptors might not be
sufficient to describe the sensor response. Polymer-carbon compos-
ite sensor responses are measured as a change in resistance, and the
response can be attributed to the swelling of the polymer film; other
mechanisms may also contribute to the sensor response. Previously,
we used the LSER methods6 to model responses of three polymer-
composite sensors to six different analytes.18 Comparison to experi-
mental data showed LSER to be a poor predictor for sensor re-
sponse. This is not surprising as the equation considers only
polymer-analyte interactions and does not account for adsorption of
analyte on the carbon conductive medium dispersed in the film, for
analyte molecule diffusion within the film, film thickness, or hydra-
tion of the film. Accordingly, the descriptor sets used in this QSAR
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study combine descriptors that describe the intrinsic analyte proper-
ties as well as interactions between sensing film and analytes.

This study compares different descriptor sets that include the
default analyte descriptor sets as well as film-analyte descriptors that
we have modeled. The sensing film-analyte interactions are calcu-
lated with molecular modeling tools using two approaches. To test
the validity of the approach of correlating sensor activity with mo-
lecular descriptors, we have used experimental data from one sensor
used in the JPL ENose sensor array.2,3 The sensor is a film of poly-
ethylene oxide that has been loaded with 12% �wt/wt� carbon black.
QSAR equations that describe sensor activities were developed for a
training set of 17 analytes using GFA. If the statistically most sig-
nificant equation produced by QSAR did not contain the sensing
film-analyte interaction term, the most significant QSAR equation
which did was selected. Generally the statistical significance was not
different for the above cases. The QSAR equation which was se-
lected to represent the sensor was then used to predict the activity of
test analytes not included in the QSAR training set.

Experimental

Sensor activity measurements.— The JPL ENose consists of an
array made up of 16 polymer-carbon composite films.2,3 Response
from the polyethylene oxide-carbon �PEO-CB� sensing films was
selected as a model system for this study. The choice of the current
system is to add to our understanding of the behavior of the
PEO-CB sensing films by developing a model that relates the sensor
activity to molecular descriptors. Our previous experimental studies
on the PEO-CB sensing films19-23 have focused on evaluating fac-
tors affecting sensing film formulation, such as carbon content, sol-
vent type, polymer molecular weight, temperature, and measuring
the PEO-CB sensor response to a suite of analytes under various
operating conditions, including humidity and temperature. The
present work provides insight into the sensing mechanism by devel-
oping a relationship between the sensor activity and molecular de-
scriptors. The analytes and concentration ranges considered for this
study are shown in Table I.

QSAR conditions.— To develop data for QSAR studies, experi-
mental responses of a PEO-CB sensor were used. Measured concen-
trations of analyte with controlled humidity were delivered to the
sensor several times over a range of concentrations. The response of

Table I. Analyte list and concentration range tested in parts-per-
million (ppm) for ENose operation (760 Torr, 23 °C). Data are
taken at a constant humidity of 5000 ppm water (approximately
18% relative humidity).

Analyte
Concentration tested
Low - High �ppm�

1. Acetone 64–600
2. Ammonia 6–60
3. Chlorobenzene 3–30
4. Dichloromethane 10–150
5. Ethanol 200–6000
6. Isopropanol 30–400
7. Xylenes �mixed� 33–300
8. Tetrahydrofuran 13–120
9. Trichloroethane 7–200
10. Acetonitrile 1–25
11. Ethylbenzene 20–180
12. Freon113 15–500
13. Hexane 15–150
14. Methyl ethyl ketone 15–150
15. Methane 1600–50000
16. Methanol 6–100
17. Toluene 5–50
18. Benzene 10–100
19. Indole 25–450
20. Dichloroethane 10–100
the sensor is expressed as a normalized change in sensor resistance
and is plotted against the delivered concentration. Response data
for each analyte and each sensor are fit to an equation of the form
y = A1x + A2x2, where x is the analyte concentration and y is the
normalized change in resistance.23 Figure 1 shows experimental data
and the fitted concentration-response equations for a PEO-CB sensor
and three representative analytes. As can be seen in the figure, the
coefficient for the quadratic term, A2, is generally three orders of
magnitude smaller than the coefficient of the linear term, A1. By
selecting coefficients from the sensor response equation as the ac-
tivity to be used in QSAR studies, we can develop an approach to
calculating response which is concentration independent. For the
purpose of this study, to determine whether a QSAR approach can
be used to predict analyte response in a sensor, only the coefficient,
A1 is used as the activity in this study. Analytes no. 1–17 �Table I�
are used in the training set to develop the QSAR equations, and the
remaining analytes �no. 18–20� are used as the test set. Test mol-
ecules were selected based on experimental data. The sensor re-
sponse to these test analytes showed larger fluctuations under vary-
ing humidity conditions than other analytes.

QSAR.— Descriptors: analyte properties and sensor response.—
The goal of the current investigation is to correlate coefficient A1 of
the JPL ENose sensor response with physico-chemical molecular
descriptors. The physical descriptors that are considered for the
QSAR study include those that describe intrinsic analyte properties
as well as sensor-analyte interactions.

The default descriptors in QSAR studies which describe intrinsic
analyte properties fall into electronic, spatial, structural, thermody-
namic, and topological categories. These default analyte descriptors
are shown in Table II.

Sensor response at a molecular level is described by interactions
between the sensing film and the analyte. Descriptors for sensor
response include interaction energies of the sensing film compo-
nents, polymer, and carbon-black, with analyte molecules and water.

Two approaches to development of a sensor response descriptor
set were investigated in this work. These approaches represent two
different molecular models to calculate analyte interactions with the
polymer-carbon sensing film. Approach I is based on cluster calcu-
lations �nonperiodic� of various sensing film components with the
analyte. Approach II involves performing sorption studies of ana-
lytes in a periodic model of the polymer-carbon composite film.
Approach I is computationally less intensive than approach II; these
approaches are discussed below.

Approaches for calculating sensing film-analyte interaction ener-
gies.— In approach I, the individual components of the polymer-
carbon composite system are used to calculate the binding energies
between analyte molecules and between analyte molecules and the
polymer-carbon composite sensing film components. In approach II,
the interaction of the analyte with the polymer-carbon composite
film is described by calculating the isosteric heat of sorption of
analyte molecules in the polymer-carbon composite. To calculate the
heat of sorption, a model of the polymer-carbon composite film was
developed based on the sensing film formulation process.

The pair interaction energies24 considered to represent the sensor
response descriptors in approach I are polymer-analyte, carbon
black-analyte, polymer-water, and carbon black-water, analyte-
analyte, and analyte-water. The general notation that is used here to
represent these interaction descriptors is of the form Exy. Depending
on the type of interactions considered, the suffixes x and y could be
polymer �p�, carbon black �cb�, analyte �a�, or water �w�. For ex-
ample interaction energy between the polymer �p� and the target
analyte �a� is denoted by Epa. The sensor response descriptor set
using approach I is shown in Table III. It includes the sensing film-
analyte descriptors Epa, Epw, Ep-cb, Ecb-a, Ecb-w, Ecb-cb, Eaa, and Eaw.

For approach II, the isosteric heat of sorption �Hsorpt� �Ref. 25� of
the analyte in the polymer-carbon composite is the descriptor that
represents the combined interactions of the analyte with the polymer
and carbon components. This term incorporates the combined effect



H211Journal of The Electrochemical Society, 153 �11� H209-H216 �2006� H211
of the separately used terms in approach I: Epa and Ecb-a. The Hsorpt
values of the analyte molecules in the PEO-CB composite are shown
in Table III. The sensor response descriptor set using approach II for
the QSAR study includes Hsorpt, Eaa, and Eaw. These interactions
also play an important role apart from the interactions of the analyte
molecule with the polymer-carbon composites, reflected in the Hsorpt
value.

A combined descriptor set that includes the default analyte de-
scriptors along with sensor response descriptors calculated using the
two approaches �approach I and II� was used in two separate QSAR
studies to correlate the sensor coefficients A1 with the molecular
descriptors. The combined descriptor set based on the approaches I
and II are referred to here as descriptor set D1 and D2, respectively.

Table II. Default analyte descriptor set.

Default analyte
descriptors Description

Apol Sum of atomic polarizabilities
Dipole-mag, Dipole-X,
Y, Z

Dipole moment magnitude
and X, Y, and Z components

RG Radius of gyration
Area Molecular surface area
MW Molecular weight
Vm Molecular volume
Density Density
PMI-mag, PMI-X, Y, Z Principal moment of inertia

magnitude and X, Y, and Z components
Rotlbonds Number of rotatable bonds
HBA Number of hydrogen bond acceptors
HBD Number of hydrogen bond donors
AlogP Log of the octanol/water

partition coefficient
MR Molar refractivity
Methodology.— Descriptor calculations.— Default analyte de-
scriptors were predicted by empirical and semiempirical QSPR us-
ing the commercial software26 Cerius2 on a Silicon Graphics O2
workstation.

Molecular models used in approach I were developed using the
Cerius2 graphical models and are shown in Fig. 2. The polymer was
modeled using its basic unit, the monomer. Carbon black was mod-
eled as naphthalene rings with no hydrogen �small graphite sheets�
and zero charge on the carbon atom.27 A cluster of 32 naphthalene
molecules was used to represent the CB. Analyte models except
water were constructed using the drawing tools in the software, and
all atoms were assigned charges and equilibrated according to the
methodology discussed below. The single point charge model was
used for water.28 Charges on the monomer and analyte atoms were
assigned by the charge equilibration method �Qeq�.29 The Dreiding
force field30 was used for the polymer and analyte molecules, and
graphite parameters were assigned to carbon black atoms.31 Equili-
bration was achieved by molecular mechanics and then by molecu-
lar dynamics simulations at 300 K.

Details for the polymer-carbon composite molecular model for
approach II �Fig. 3� are described elsewhere.27 In brief, the polymer-
carbon composite model was developed by inserting naphthalene
rings �carbon black� in a polymer matrix, followed by a combination
of molecular mechanics �MM� and molecular dynamics �NPT-MD
and NVT-MD� techniques for equilibration. Force field parameters
used in approach II are the same as those used in approach I.

To calculate the sensor response descriptors in approach I, the
sensing film-analyte interaction energies were calculated using
Monte Carlo simulation techniques. Interaction energy between the
polymer and an analyte molecule, Epa, was calculated by fixing the
polymer structure in space and sampling the analyte molecule
around the polymer, then averaging the energy calculated over all
the random analyte configurations generated around the polymer.
In this study we used 105 configurations. E , E , E , E ,

Figure 1. Plots for three gases �ammonia,
xylenes, ethanol� showing the experimen-
tal data and fitted concentration-response
equation �y = A1x + A2x2� for the
PEO-CB sensing film. The lines are drawn
to guide the eye.
pw p-cb cb-a cb-w
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Ecb-cb, Eaa, and Eaw descriptors were calculated similarly. The
BLENDS module in the Cerius2 software performs the calculations
based on the methodology described above.

The sensor response descriptor calculations for approach II in-
volve performing sorption simulations of the analyte molecule in the
polymer-carbon composite to calculate the isosteric heat of sorption
�Hsorpt�. Hsorpt is a positive value25 and is the differential heat liber-
ated by the isothermal desorption of a differential amount of the
adsorbate �analyte�. It is calculated from the integral enthalpy of
desorption relative to a perfect-gas reference state. In our case, Hsorpt
depends on the interaction energies of the sorbed analyte molecule
in the polymer-carbon composite. The sorption simulations for this
work were performed at constant analyte loading of one molecule.
The SORPTION module in the Cerius2 software was used to accom-
plish the task. The program generates random points in the polymer
and tries to insert an analyte molecule. Insertion attempts that in-
volve the overlapping of the analyte molecule with the polymer

Table III. QSAR study table showing sensing film-analyte interacti
interactions energies (kcal/mol) are calculated using molecular modeli
in parentheses.

Analyte
Experimental

activity Epa Epw Ea

Acetone 0.006 −0.50 �0.56� −0.28 �0.74� −0.33 �
Ammonia 1.05 −0.16 �0.34� −0.28 −0.11 �
Chlorobenzene 0.229 −0.69 �0.75� −0.28 −0.43 �
Dichloromethane 0.025 −0.57 �0.63� −0.28 −0.36 �
Ethanol 0.0112 −0.42 �0.51� −0.28 −0.25 �
Isopropanol 0.054 −0.48 �0.53� −0.28 −0.28 �
o-xylene 0.113 −0.62 �0.42� −0.28 −0.30 �
Tetrahydrafuran 0.029 −0.55 �0.52� −0.28 −0.32 �
Trichloroethane 0.0024 −0.65 �0.60� −0.28 −0.43 �
Acetonitrile 0.134 −0.44 �0.34� −0.28 −0.29 �
Ethylbenzene 0.445 −0.63 �0.42� −0.28 −0.37 �
Freon113 0.007 −0.65 �0.67� −0.28 −0.45 �
Hexane 0.0253 −0.55 �0.40� −0.28 −0.32 �
Methylethyl
ketone

0.0265 −0.52 �0.57� −0.28 −0.33 �

Methane 0.0001 −0.32 �0.10� −0.28 −0.17 �
Methanol 0.031 −0.34 �0.57� −0.28 −0.23 �
Toluene 0.061 −0.62 �0.39� −0.28 −0.36 �

Figure 2. Molecular models for approach I to calculate sensing film-analyte
interactions. �a� Polyethylene oxide monomer unit, �b� carbon black, �c�
ammonia molecule �representative model�. The shaded atom in the polyeth-
ylene oxide monomer unit represents oxygen.
structure are discarded. After the insertion step, each subsequent
configuration is generated by either a random translation or rotation
of the analyte molecule in the polymer matrix, taken in the usual
Metropolis Monte Carlo manner. The isosteric heat of sorption value
is calculated at the end of the run. Sorption simulations were per-
formed using two trajectories extracted from the NVT-MD simula-
tions. These trajectories were recorded during the NVT-MD simula-
tions corresponding to PEO-CB composite structure at 50 and
100 ps time. For each trajectory, two independent sorption simula-
tions at a fixed analyte loading of one molecule were carried out at
300 K for �1–3 million iterations. This was to allow the analyte
molecule to access different structural and spatial amorphous envi-
ronments in the polymer composite. The software calculates a run-
ning average value of the isosteric heat of sorption at the end of each
of run. The heat of sorption value for each analyte used for the
current work represents an average value over the trajectories.

QSAR equation: terms and functional form selection.— The first
step in the QSAR model development process was to use the com-
bined descriptor set to investigate the number of terms �Nterm� and
the functional forms, linear or linear quadratic, to be used in the

ergy descriptors used in approaches I and II. Sensing film-analyte
hniques. The standard deviations for Exy and Hsorpt values are shown

Eaa Ecba Ep−cb Ecb−cb Hsorpt

−0.65 �0.54� −0.95 �0.36� −0.79 �0.30� −1.68 �0.74� 9.96 �0.10�
−0.05 �0.23� −0.28 �0.10� −0.79 −1.68 3.65 �0.65�
−1.14 �1.08� −1.28 �0.58� −0.79 −1.68 14.72 �2.00�
−0.77 �0.76� −1.09 �0.41� −0.79 −1.68 11.54 �1.72�
−0.41 �0.59� −0.78 �0.30� −0.79 −1.68 9.88 �1.27�
−0.49 �0.70� −0.90 �0.33� −0.79 −1.68 10.58 �1.37�
−0.94 �0.63� −1.20 �0.55� −0.79 −1.68 13.79 �0.44�
−0.53 �0.65� −1.19 �0.53� −0.79 −1.68 11.72 �0.68�
−1.27 �0.77� −1.26 �0.49� −0.79 −1.68 13.97 �2.55�
−0.46 �0.25� −0.83 �0.32� −0.79 −1.68 7.97 �1.13�
−0.91 �0.58� −1.19 �0.53� −0.79 −1.68 13.03 �1.40�
−0.17 �1.70� −1.32 �0.50� −0.79 −1.68 12.67 �0.86�
−0.69 �0.40� −1.06 �0.43� −0.79 −1.68 12.05 �0.90�
−0.64 �0.73� −1.01 �0.39� −0.79 −1.68 11.43 �1.12�

−0.23 �0.06� −0.61 �0.22� −0.79 −1.68 3.72 �0.41�
−0.29 �0.60� −0.65 �0.25� −0.79 −1.68 8.57 �0.87�
−0.90 �0.57� −1.17 �0.53� −0.79 −1.68 11.46 �2.56�

Figure 3. Molecular model for approach II to calculate sensing film-analyte
interactions. Shown is a polyethylene oxide-carbon composite model with a
density of 0.90 g/cm3. The clusters represent carbon black and the cylindri-
cal chains represent the polymer.
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QSAR equations. Spline terms are not considered because of the
small size of the training set �17 analyte molecules�.

QSAR studies were performed using D1 descriptors with no con-
stant by varying the number of terms from 1 to 5, with linear and
quadratic functionality. QSAR studies for the PEO-CB sensor were
performed using GFA for the training set, analytes 1–17. QSAR
equations were developed using 5000 crossovers.

Statistical parameters such as correlation coefficient �r2� and F
�Ref. 18� were used to determine the reliability and significance of
QSAR models. The r2 value describes the goodness of fit of the data
to QSAR model. The F value is a ratio of explained and unexplained
variance. As the F value increases, the significance of the QSAR
equation becomes greater.

The predicting ability of the QSAR equations can be estimated
using the leave-one-out cross-validation technique. In this proce-
dure, new regression coefficients are generated for a given model
after systematically removing one analyte sample at a time from the
training data set. This new regression model is then used to predict
the activity of the removed sample. This procedure is performed for
each of the 17 analytes. The series of predictions is then used to
calculate a new value for the cross-validated r2 �CV-r2�.

To determine the number of terms and equation type to be used
in our model, we plotted Cv-r2 against the number of terms for both
linear and linear-quadratic equation types as shown in Fig. 4. It can
be seen that the linear-quadratic terms have a greater CV-r2 com-
pared to the linear terms. Figure 4 also shows that, for a linear-
quadratic equation, no substantial increase in CV-r2 is achieved by
increasing the number of terms from 3 to 4. Because the training
data set is limited to only 17 analytes, any increase in number of
terms in the model would be an overfit to the data. Even in tradi-
tional QSAR studies for biological systems, using 50–100 training
data points,14-17 the number of terms considered for model develop-
ment is generally 3–4 terms.

QSAR equation: sensor activity representation.— The response of a
polymer carbon sensing film to a given analyte molecule is based on
how the sensing film components �polymer and carbon black� in the
polymer-carbon composite interact with the analyte molecule.
Therefore, the QSAR equation that we have chosen to represent a
given sensor is selected from a set of cross-validated equations gen-
erated by the GFA algorithm. The selected equation is the statisti-
cally most significant one �largest r2 value� of the equation set,
which also contains the polymer-analyte �Epa� descriptor for the D1
descriptor set or heat of sorption �Hsorpt� term for the D2 descriptor
set. The goal of this modeling effort is to develop an equation for

Figure 4. �Color online� A plot of cross-validated r2 �CV-r2� vs number of
descriptor �Nterm� for the training analyte set using the combined descriptor
set �analyte and sensor response descriptors�.
each sensor in the ENose array, each equation describing the re-
sponse of that particular sensor to analytes. The interaction descrip-
tors Epw, Ep-cb, and Ecb-w are the same for all analytes and hence will
not appear in the QSAR equations.

Results and Discussion

QSAR using D1 descriptor set (approach I).— As discussed in
the Methodology section, we have used a three term linear-quadratic
form for the QSAR study. A set of cross-validated QSAR equations
generated by GFA, containing the polymer-analyte �Epa� term, is
shown in Table IV. The statistically most significant equation con-
taining the descriptor Epa is

Calculated activity-1 = 0.15207 Epa + 0.116727 HBD
2

+ 0.000241 MR2 �1�

�r2 = 0.86, F = 40.6�
The best statistical QSAR equation obtained using descriptor set

D1 has r2 = 0.88 and F = 44.8; it does not contain an Epa term.
There is no substantial statistical difference between the best equa-
tion obtained and Eq. 1. The calculated activity is plotted vs the
experimental values in Fig. 5.

In QSAR Eq. 1, we observe that the analyte descriptors that
appear along with the polymer-analyte interaction term �Epa� are
hydrogen bond donor site �HBD� and molar refractivity �MR�. The
PEO monomer has one hydrogen bond acceptor site; thus, it is logi-
cal that a descriptor that represents the hydrogen bond donor nature
of the analyte appears in the equation. The analyte descriptor MR is
a combined measure of molecule size and polarizability, and is cal-
culated from the refractive index, molecular weight, and density of

Table IV. QSAR generated partial equation set for approaches I
and II, containing Epa and Hsorpt terms. The statistically signifi-
cant equation is the one chosen to represent the sensor activity.

Calculated Activity �A1�= r2 F

Approach I
0.15207 Epa + 0.116727 HBD

2 + 0.000241 MR2 0.86 40.6
−0.283563 Epa

2 + 0.114330 HBD
2 + 0.000256 MR2 0.86 38.7

0.286937 Epa
2 + 0.182699 HBD

2 − 0.200424 HBD 0.84 34.6
Approach II
−0.008856 Hsorpt + 0.118308 HBD

2 + 0.000264 MR2 0.87 44.4
−0.000801 Hsorpt

2 + 0.115485 HBD
2 + 0.000284 MR2 0.87 43.1

−0.022602 Hsorpt + 0.120321 HBD
2 + 0.013894 MR 0.86 40.3

Figure 5. �Color online� A plot of QSAR calculated vs experimental sensor
activity for the training and test analyte set using combined descriptor set
D1. The calculated values for both the training and test analyte set are ob-
tained using Eq. 1. The r2 value refers to the correlation between the calcu-
lated vs the experimental values obtained for the training data set.
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the analyte. As swelling in the polymer-carbon composite film is one
mechanism of sensor response, it is logical that molecular size of the
analyte will appear in the equation describing sensor response.

The next task was to use QSAR Eq. 1, developed using the
training set to predict the sensor coefficients for test analytes that
were not included in the training set. The aim of this exercise is to
determine whether the equation can be used to predict sensor activ-
ity without performing exhaustive and time-consuming experiments,
for example if new analytes are added to the target list. The analytes
considered for this case are analytes 18–20 of Table I, benzene,
dichloroethane, and indole. The calculated values for the training set
and the test analytes are also shown in Fig. 5 along with the training
data set. The model works satisfactorily for benzene and dichloro-
ethane but overpredicts the activity for indole. Indole is the least
volatile analyte on our list. It is also the only aromatic on our list
that has a hydrogen bond donor site. As discussed below, the A1
coefficient for indole may be better predicted with the inclusion of
vapor pressure in the molecular descriptor set.

Effect of polymer chain length on sensor activity equation.— The
polymer-analyte interaction energies in Eq. 1 were calculated con-
sidering a monomer representation of the polymer. We also investi-
gated the effect of polymer chain length on the QSAR model for-
mation. A polymer chain model consisting of 20 PEO monomer
units was built. The detailed methodology to construct the polymer
chain model is discussed elsewhere.27 The statistically most signifi-
cant QSAR equation containing the descriptor Epa is

Calculated activity-1 = 0.074309 Epa + 0.11555 HBD
2

+ 0.000222 MR2 �2�

�r2 = 0.86, F = 40.0�
On comparing the sensor activity Eq. 1 and 2 for approach I,

representing the monomer and polymer cases, respectively, note that
the statistically best equation with Epa contains the same other de-
scriptors: HBD and MR, with similar coefficients. The statistical
parameters, r2 and F, are also similar. This leads us to believe that
using monomer or polymer case will give similar results.

QSAR using D2 descriptor set (approach II).— QSAR studies
using descriptor set D2 were performed using the three-term linear-
quadratic form. The statistically most significant equation generated
which set contained the heat of sorption term �Hsorpt� along with
other descriptor terms was chosen from a set of cross-validated
models generated in the QSAR studies. The best statistical QSAR
equation obtained using descriptor set D2 has r2 = 0.88 and F
= 46.3. A set of cross-validated QSAR equations generated by GFA,
containing the Hsorpt term, is shown in Table IV. The statistically
most significant of the QSAR equations obtained containing Hsorpt
term was

Calculated activity-2 = − 0.008856 Hsorpt + 0.118308 HBD
2

+ 0.000264 MR2 �3�

�r2 = 0.87, F = 44.4�
Equation 3 was used to predict the sensor coefficient A1 for the

test analytes: benzene, dichloroethane, and indole. A plot of QSAR
calculated vs experimental sensor activities for the descriptor set D2
is shown in Fig. 6. As seen in Fig. 6, similar to the previous case, the
model works satisfactorily for benzene and dichloroethane but over-
predicts indole.

The r2 value of the calculated vs experimental fit using Eq. 3 is
not significantly different from that of Eq. 1. On visual comparison
of Fig. 5 and 6, we can see that the data fit using D2 descriptor set
appears to be marginally better than the data fit from D1. This im-
provement is also reflected in a marginal improvement in the F
value. On comparing Eq. 1 and 2, we see similarity in the descrip-
tors that have appeared in the equations as well as the functional
form. There is quadratic dependence on the HBD and MR terms, and
a linear dependence on the sensor response descriptor that appears in
the selected equation, Epa, for approach I and Hsorpt for approach II.
The sensor response descriptors have similar functional nature.

Alternative descriptors and approaches.— Note the that the ana-
lyte descriptor terms MR and HBD, which appear in our calculated
activity models, also appear in the LSER approach.6,32 In addition,
the partition coefficient of a sensing film, K, is correlated with a
linear combination of analyte solubility descriptors �solvation pa-
rameters� in LSER. The regression coefficients obtained for the
LSER models characterize the properties of the sensing film. The
analyte property terms that appear in the LSER equation are the
excess molar refractivity, dipolarity-polarizability, hydrogen bond
acidity and basicity parameters, and gas-liquid partition coefficient.
The LSER approach has been used for sorption studies of vapors in
a polymer film only32 and also for sorption in graphite-fullerene
coatings.33 The sensing film used in our studies is a polymer-carbon
composite film; our previous efforts19 to use LSER for polymer-
carbon composite have resulted in poor correlation between calcu-
lated and measured sensor response. The QSAR approach used in
this work is different from LSER, as it includes polymer-analyte and
carbon black-analyte interactions as well as contributions from
analyte-water interactions that represent experimentation conditions
in the descriptor set.

Approach I used in this work to calculate the sensor response
descriptors is a rapid approach that takes into account the chemical
nature of the individual components, i.e., thermodynamic and elec-
tronic characteristics of the monomer, carbon black, and the analyte.
Approach II represents a more complete representation of sensing
film-analyte interactions, and takes into account the structural aspect
of the polymer composite film as well as the sorption process that
occur, which mimics the process that happens during experiments.
The performance of the these two approaches is similar, but we
might see differences in performance of these approaches for our
future work with other sensing films used in the formation of the
JPL-ENose sensor array based on different polymer types being
used.

The above studies suggest that the descriptor set used in this
work does not describe the sensor response fully; it is possible that
additional descriptors could be considered in the descriptor list. In
addition, it is recognized that the partition coefficient of the analyte
in the polymer correlates to polymer-carbon black sensor
response.34,35 The sensing film response for gas-phase detection of a
target analyte molecule is a function of the equilibrium partition
coefficient, K, of the analyte molecule in the sensing film.32,36,37

This equilibrium constant is defined as the ratio of the equilibrium
concentrations of the analyte in the sensing film �C � to the bulk

Figure 6. �Color online� A plot of QSAR calculated vs experimental sensor
activity for the training and test analyte using combined descriptor set D2.
The calculated values for both the training and test analyte set are obtained
using Eq. 3. The r2 value refers to the correlation between the calculated vs
the experimental values obtained for the training data set.
s
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analyte concentration �Cv� the sensing film is exposed to. The ana-
lyte concentration in the sensing film, Cs, is normally measured
using piezoelectric techniques. The bulk analyte concentration in a
carrier gas �air or nitrogen� depends on the vapor pressure of the
target analyte at a given temperature. As evaluating partition coeffi-
cients by measuring experiments for mass uptake by the polymer-
carbon composite film is not within the scope of this work, we
decided to run a trial QSAR study by adding the vapor pressure38 of
the analyte molecules �calculated at 300 K� to the descriptor set D2.
Preliminary results are shown in Fig. 7. There is no substantial im-
provement in the fit of the training data set, seen from r2 = 0.88 and
F = 48.5 values. However, the QSAR equation predictions for the
test analytes appear superior, particularly for indole, which was
poorly predicted by the previous two descriptor sets. The descriptor
that replaces the HBD term of Eq. 2 is vapor pressure �VP�. Future
studies will determine whether descriptors related to analyte parti-
tioning in the sensing film should be included as a variable in the
descriptor list.

Conclusions

The similarity of the results for approaches I and II depends on
the correlation between the calculated coefficients, A1, and the mo-
lecular descriptor set. The key descriptor used for sensor activity
representation for the current investigation is the sensing film-
analyte interaction, in particular Epa or Hsorpt. The calculations of
Epa or Hsorpt values depend on the physicochemical and morphologi-
cal properties of the polymer/polymer-carbon composite matrix;
polymers with different functional groups from the PEO used in this
study may lead to significantly different results for approaches I and
II. For example, in approach II, which involves building a polymer-
carbon composite model, the flexibility of the polymer could also
influence the microstructure of the polymer-carbon composite, and
thus the sorption location of the analyte and the heat of sorption
value. Also, for PEO, the same correlation is observed between the
calculated coefficients A1 and the molecular descriptors. The 16
polymers used on the JPL ENose represent various categories of
chemical functionality: hydrogen-bond acidic, hydrogen-bond basic,
dipolar, and hydrogen-bond basic, etc. The similarity of the two
approaches for other polymer-carbon sensing film systems, for poly-
mers in these categories �e.g., ethyl cellulose, polypyrollidone� is
currently being investigated.

We do not expect to calculate the exact value of the coefficient
A1 using the QSAR approach described here. It is likely that there
are effects influencing sensor response which are not accounted for

Figure 7. �Color online� A plot of QSAR trial run results, with vapor pres-
sure �VP� descriptor added to the combined descriptor set D2. The calculated
values for both the training and test analyte set are obtained using the equa-
tion, 0.000207 MR2 + 1.00E − 06 VP2 − 0.000344 Hsorpt

2 . The r2 value re-
fers to the correlation between the calculated vs the experimental values
obtained for the training data set.
in the models of interaction energy or in the physicochemical prop-
erties of the analyte. For example, any addition of pathways for
conduction, such as ions in the polymer matrix, would result in a
decrease in resistance, but such a decrease would not be accounted
for in either the calculated interaction energies or in the default
descriptor set. In addition, because the sensor response is expressed
as a quadratic equation, and this study does not consider the coeffi-
cient A2, there will necessarily be some degree of error in the cal-
culated A1. As the coefficient A2 is generally three orders of magni-
tude smaller than A1, the quadratic term does not contribute strongly
to sensor response at low concentration, but it does contribute. This
study demonstrates that this QSAR approach is a promising ap-
proach to predicting sensor response to a new analyte, and will
allow us to determine whether an analyte is likely to induce a weak
or strong response in selected sensors. Future work will focus on
incorporating both A1 and A2 into the model, on expanding the sen-
sor set beyond the PEO-carbon composite film used in this study,
and on selection of descriptors for full description of activity.

Experimental data for a polyethylene oxide-carbon black sensor
in the JPL ENose were correlated using QSAR with intrinsic analyte
properties and molecular interaction energy terms. The model devel-
oped showed good correlation for the entire analyte set as well as
analyte subsets. The descriptors that predict the polymer-carbon sen-
sor response indicate that the polymer-analyte interaction is not the
only important interaction to consider. In addition to predicting sen-
sor response, it may be possible to elucidate the sensing mechanisms
using this approach. The approach will be extended to other polymer
composite sensors used in the JPL ENose system.

The ability to predict sensor responses accurately will be of great
help in characterizing sensing materials. Developing a response li-
brary �training�, an array for a given set of analytes, and a given set
of environmental conditions �temperature, pressure, and humidity� is
time-consuming; in addition, developing training sets and calibra-
tion information may impinge on the useful lifetime of the sensors.2

Our goal is to develop one representative equation for each sensor
material �polymer-carbon sensing film� in the array. In the future,
the development of “n” equations to describe the ENose sensing
array will facilitate the generation of virtual training sets for any
given sensor array for analytes that may not easily be tested, such as
highly toxic or explosive compounds. The predictions can also be
used to generate parameters for the identification and quantification
software. Subsequently, fewer experimental tests will need to be run
on any given sensor array.
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