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ABSTRACT 

The Third Generation ENose is an air quality monitor 
designed to operate in the environment of the US Lab on 
the International Space Station. It detects a selected 
group of analytes at target concentrations in the ppm 
regime at an environmental  temperature range of 18 - 
30 oC, relative humidity from 25 - 75% and pressure 
from 530 to 760 torr.  The abilities of the device to detect 
ten analytes, to reject confounders as “unknown” and to 
deconvolute mixtures of two analytes under varying 
environmental  conditions has been tested extensively in 
the laboratory.  Results of ground testing showed an 
overall success rate for detection, identification and 
quantification of analytes of 87% under nominal 
temperature and humidity conditions and 83% over all 
conditions. 

INTRODUCTION 

The JPL Electronic Nose [1-5] is an event monitor 
designed and built for near real time air quality 
monitoring in crew habitat aboard the space 
shuttle/space station.  This is an array–based sensing 
system which is designed to run continuously and to 
monitor for the presence of selected chemical species in 
the air at parts-per-million (ppm) to parts-per-billion (ppb) 
concentrations.  

There have been three phases of development of the 
JPL Electronic Nose.  In the first phase, a device 
capable of detecting, analyzing and quantifying ten 
analytes at the 1-hour Spacecraft Maximum Allowable 
Concentration (SMAC) was developed.  This device was 
tested successfully in 1998 on Space Shuttle flight STS-
95 [4].  In the second phase, the ENose was 
miniaturized and the capabilities were significantly 
expanded to include 21 analytes and detection at 
varying humidity and temperature. The Second 
Generation ENose was tested extensively on the ground 
and was demonstrated to be able to detect, identify and 
quantify the 21 analytes at or below their 24-hour 
SMACs [6].  In preparation for an upcoming, six-month 
technology demonstration aboard the International 
Space Station (ISS) in 2008-09, the JPL ENose team is 

developing a Third Generation ENose which is designed 
to monitor spacecraft cabin air quality in near real-time.     

Development of the Third Generation JPL ENose has 
required two major areas of development.  One area is 
the design and fabrication of an interface unit which will 
allow the ENose to be operated through the EXPRESS 
Rack (EXpedite The PRocessing Of Experiments To 
Space Station) on the ISS for a six-month technology 
demonstration experiment. The second area of 
development includes the sensing platform and the data 
analysis software.  Using the Second Generation ENose 
as a base, the sensing materials, sensor substrate, and 
data analysis routines are being expanded in order to 
include the ability to detect additional inorganic species, 
mercury and sulfur dioxide, and to provide quasi-real 
time data analysis. The design and development of the 
3rd Generation ENose has been discussed in detail 
elsewhere [7,8]. 

This paper will focus on extensive laboratory testing of 
the capabilities of the 3rd Generation Electronic Nose 
(ENose) under a variety of environmental conditions. 

 

Figure 1: The Third Generation ENose. The 
Sensor Unit is enclosed in the Interface Unit, which 
will be connected to the ISS EXPRESS Rack 



 

 

THE THIRD GENERATION JPL ENOSE 

The ENose was tested for response and ability to 
identify and quantify eleven chemical species, shown in 
Table1.  A quantification is considered to be correct if 
the concentration value reported by the ENose data 
analysis software is +/-50% of the independently 
measured concentration of the species. The error range 
of  +/-50% in quantification is based on the approximate 
range with which the Spacecraft Maximum 
Concentrations (SMACs)  are set; toxicities are not well 
known for most chemical species, and SMACs are set 
very conservatively.  

Success rate in analyte identification and quantification 
is the number of correctly identified and quantified 
deliveries of analyte, minus the number of false 
negatives and false positives, divided by the number of 
deliveries of analyte.  A false negative is failure to detect 
the delivery and presence of a targeted chemical 
species.  A false positive is a report of the presence of a 
chemical species when it was not present. 
Misidentification of a targeted species, for example 
identifying propanol as methanol, or identifying a 
confounder as a targeted species, is considered to  be a 
false positive. 

Table 1: Analyte List and Target Detection 
Concentration; mg/m3 is a pressure independent unit; 
ppm is for 1 atm.    

 ANALYTE QUANT. 
TARGET 
(mg/m3) 

QUANT. 
TARGET 

(ppm) 
TIER 1 Ammonia 3.5 5.0 

 Mercury 0.080 0.010 
 Sulfur Dioxide 3.0 1.0 

TIER 2 Acetone 500 200 

 Dichloromethane 35 10 
 Ethanol 940 500 
 Freon 218 150 20 
 Methanol 13 10 
 2-Propanol 240 100 
 Toluene 60 16 

TIER 3 Formaldehyde 0.12 0.10 
 

The chemical species in Table 1 are divided into three 
tiers, based on the importance to NASA Habitability and 
Environmental Factors Office in detecting these species.  
Formaldehyde was classified as Tier 3 because its 
identification and quantification was a goal, not a 

requirement for this program; however, formaldehyde 
was treated as a Tier 2 analyte for ease of testing. 

 

 

ENVIRONMENTAL CONDITIONS 

The environmental conditions under which testing was 
done were defined according to conditions which can be 
expected in the US Lab on the ISS.  Background air 
composition was based on allowed ISS atmospheric 
concentrations of water, carbon dioxide and methane.  
Relative humidity (RH) may vary from 25-75% at 
temperatures of 18oC - 30oC, CO2 concentration may be 
as much as ~15 mm Hg partial pressure and CH4 may 
be several hundred ppm).  Atmospheric pressure in the 
ISS may vary from 538 - 760 torr (10.4 to 14.7 psi) and 
may rise for brief periods (minutes) as high as 830 torr 
(16 psi).  

Temperature may vary over the range 18 - 30oC (66 to 
86 oF).  Nominal conditions are 760 torr, temperature 21-
23oC and relative humidity 30-40%.  Testing was done 
under all conditions, but not all concentrations of all 
analytes were tested under all conditions. For 
repeatability in testing, water content was controlled as 
ppm water rather than as relative humidity. Nominal 
conditions on orbit in ISS correspond approximately to 
21-22oC, 10,000 ppm water, and atmospheric pressure. 

 

TRAINING SETS 

As the ENose is an array-based chemical sensor device, 
before it can be used as an air quality monitor, training 
sets must be acquired.  Based on the training sets, the 
patterns of array response to targeted analytes under 
specified conditions are included in the data analysis 
algorithm.  

Data from the ENose are recorded for each individual 
sensor as resistance versus time.  Because the ENose 
is designed to function as an event monitor, the data are 
analyzed as change in resistance vs. time. Individual 
sensor resistances are recorded simultaneously, with a 
point being taken every twenty seconds.  While it would 
be possible to take data more or less frequently than 
three times a minute, this data rate has been established 
as an optimum rate to show fairly rapid changes in the 
environment without overwhelming computer memory 
with data.  Our data analysis approach defines an 
“event’ as a change in the composition of the 
environment which lasts longer than ten minutes, or 
thirty points at the standard data rate, in part because 
events of duration shorter than ten minutes cannot 
practically be addressed or mitigated using either 
breathing apparatus or clean-up techniques.  The data 
analysis algorithm needs about ten points (~ three 



minutes) to establish that resistance has changed 
significantly. Based on the data rate and needs of the 
data analysis algorithm, training sets are established 
using vapor deliveries, or events, of 30-45 minutes 
duration. 

The data analysis algorithm is a Levenberg-Marquart 
non-linear least squares fitting approach to 
deconvolution of change in resistance across the 
sensing array into identification and quantification of the 
analyte causing response in the sensors.  The analysis 
approach has been discussed in detail previously [9]. 

Training sets were established for the eleven analytes in 
Table 1.  The environmental conditions for the training 
sets vary only in water content.  Because there is 
temperature control in the sensing chamber in the 
ENose, the environmental temperature does not 
influence the temperature at which analytes are 
detected, identified and quantified. Detection 
temperature is held at 25-27oC for all training sets.  
Detection temperature rises above 27oC only when 
environmental temperature approaches 30oC, the 
maximum temperature for ENose operation, in which 
case detection temperature will be 27-28oC. The relative 
humidity of the environment will be altered if the 
temperature of the sensing chamber is different from the 
temperature of the environment, so for training sets, the 
humidity is regulated as ppm water. Training sets were 
made in a background of filtered house air with water 
concentrations of 5000, 10,000, 15,0000 and 20,000 
ppm.  These concentrations correspond roughly to 20%, 
40%, 60% and 80% relative humidity at 21oC, and cover 
the specified range of humidities for the specified range 
of temperatures.  

Initial training sets where pressure was varied showed 
that the sensor resistance changes with respect to the 
presence of analyte were not dependent on 
environmental pressure, so a complete set of varied 
pressure training sets was not made. 

In designing training sets, the range of analyte 
concentration to which sensors are exposed is set at 1/3 
to 3 times the target concentration.  This range is divided 
into 10-12 concentrations, and the sensor array exposed 
to those concentrations at each water content.  A total of 
1599 different analyte exposures were made to establish 
the training sets; 325 for Tier 1 compounds and 1274 for 
Tiers 2 & 3.  The exposures were divided approximately 
equally among four humidity levels, although there was 
a larger number at the two lowest humidities in both 
sets, Tier 1 and Tiers 2 & 3. Formaldehyde, the one Tier 
3 compound, had the fewest exposures, as it was a goal 
rather than a requirement in this program. 

Training sets give insight into the conditions under which 
the ENose operates best, which conditions cause 
difficulties in identification and quantification, and allow 
calculation of performance as accuracy of identification 
and quantification, number of false negatives and 
number of false positives using a large number of trials.  

Training sets can be used to judge the accuracy of the 
identification and quantification algorithm even though 
they are used to establish the coefficients.  Accuracy of 
the algorithm has been computed using half the data to 
establish the algorithm and coefficients and the other 
half to test the application, and using all the data for both 
functions. The statistical difference in results is 
insignificant.  In the success rates for identification and 
quantification shown below, all the data are used for 
both functions. 

 

SUCCESS RATES 

Tables 2 and 3 summarize the identification and 
quantification accuracy results based on training sets. In 
these data, success in detection signifies that the 
analyte was detected, identified correctly, and quantified 
within +/- 50% of the measured delivered concentration 
of analyte.  An “event” is defined as a change in 
environment caused by the presence of a targeted 
species.  A false positive is detection of an “event,” 
either where there was no event, or mis-identification of 
an event (e.g. identification of toluene as methanol.)  A 
false negative is failure to identify that an event has 
happened, without respect to identification or 
quantification.  

As can be seen from both Tables 2 and 3, accuracy in 
identification of analytes is best at nominal humidity 
conditions, approximately 10,000 ppm water (30-40% 
RH).  The overall success rate for identification and 
quantification is better when the water content of the air 
is not at its highest; for Tier 1 species, the overall 
success rate at nominal temperature and humidity is 
93%, and for Tier 2 the overall success rate at nominal 
conditions is 85%.  

At conditions of 50-60% relative humidity with 
environmental temperature above 21-22oC, the 
increased water absorbed by polymer based sensors 
lowers the sensor responses to other vapors.  In 
addition, high water content in polymer based sensors 
can result in dissolution of  some Tier 2 compounds, 
particularly oxygen-containing compounds, which will 
result in a different type of capture of analyte molecules 
in the sensing film.  At high humidity, overall success 
rate for Tier 1 species falls to 82% and to 74% for Tier 2 
species.  Sensors for mercury are inorganic, and so are 
not significantly affected by humidity; the fall in success 
with humidity for Tier 1 species is cause by a slight fall in 
success with ammonia and a significant fall in success 
for SO2.  With Tier 1 species, lower, but not zero, 
humidity tends to be better for sensing, especially with 
SO2, which reacts with water to form sulfuric acid.  
Sensor response to ammonia falls off with humidity as it 
does for the organic species in Tier 2; it is the same 
polymer sensors which  are used to detect and quantify 
organic compounds that are used in sensing ammonia.  



For Tier 2 compounds, lower humidity, 5000 ppm water, 
and slightly higher than nominal humidity, 15,000 ppm 
water, have similar overall accuracy, success rates of 
80% and 79%, respectively.  The overall accuracy at the 
high end of humidity conditions, 20,000 ppm, is 
significantly lower that at the lower humidities for Tier 2 
species, as it is for Tier 1.   

The Tier 3 species, formaldehyde, is detected well at 
nominal conditions, but poorly at high humidities.  

Because the concentration of formaldehyde is very low, 
and because it is a small molecule, response to this 
compound is masked by response to water at high 
humidity.  Although the ENose program has worked to 
develop approaches to deconvolute response to an 
analyte masked by high humidity, in the case of 
formaldehyde, which has a very small signal in polymer 
sensors, the sensor response cannot be separated. 

Table 2:  Analyte ID success rates for Tier 1 chemical species, based on training set data 

Analyte at 25oC, 5000 ppm 
H2O -  16% RH Correct False Pos False Neg

Number 
of events

Ammonia (2 - 25) 0.90 0.17 0.00 46
Mercury (.003-.03) 0.95 0.04 0.01 24
Sulfur Dioxide 0.94 0.05 0.01 24
Average, Tier 1 0.93 0.01 0.00 94

Correct False Pos False Neg
Number 

of events
Average, Tier1 over all 

conditions 0.89 0.03 0.00 325

Analyte at 25oC, 10000 ppm 
H2O -  32% RH Correct False Pos False Neg

Number 
of events

Ammonia (2 - 25) 0.93 0.07 0.00 42
Mercury (.003-.03) 0.95 0.04 0.01 24
Sulfur Dioxide 0.92 0.07 0.01 24
Average, Tier 1 0.93 0.02 0.00 90

Analyte at 25oC, 15000 ppm 
H2O -  48% RH Correct False Pos False Neg

Number 
of events

Ammonia (2 - 25) 0.87 0.13 0.00 60
Mercury (.003-.03) 0.93 0.07 0.00 15
Sulfur Dioxide 0.77 0.22 0.01 15
Average, Tier 1 0.86 0.05 0.00 90

Analyte at  25oC, 20000 
ppm H2O -  64% RH Correct False Pos False Neg

Number 
of events

Ammonia (2 - 25) 0.81 0.19 0.00 31
Mercury (.003-.03) 0.92 0.08 0.00 10
Sulfur Dioxide 0.73 0.25 0.02 10
Average, Tier 1 0.82 0.04 0.00 51



Table 3:  Analyte ID success rates for Tier 2 & 3 chemical species, based on training set data 

Correct False Pos False Neg
Number of 

events
Average, Tiers 2&3 
over all conditions 0.80 0.20 0.00 1274

Analyte at 25oC, 5000 ppm 
H2O -  16% RH Correct False Pos False Neg

Number 
of events

Acetone (91 - 1000) 0.90 0.10 0.00 30
DichloroMethane (3 - 45) 0.63 0.37 0.00 31
Ethanol (167 - 2001) 0.90 0.10 0.00 30
Freon 218 (6 - 100) 0.70 0.29 0.01 61
Methanol (3 - 50) 0.83 0.16 0.01 30
2-Propanol (30 - 500) 0.74 0.26 0.00 61
Toluene (7 - 76) 0.97 0.03 0.00 30
Formaldehyde (0.03 - 0.3) 0.72 0.27 0.01 27
Average, Tiers 2&3 0.80 0.20 0.00 300

Analyte at 25oC, 10000 ppm 
H2O -  32% RH Correct False Pos False Neg

Number 
of events

Acetone (91 - 1000) 0.91 0.09 0.00 43
DichloroMethane (3 - 45) 0.75 0.25 0.00 60
Ethanol (167 - 2001) 0.88 0.12 0.00 32
Freon 218 (6 - 100) 0.67 0.33 0.00 73
Methanol (3 - 50) 0.87 0.13 0.00 30
2-Propanol (30 - 500) 0.88 0.12 0.00 74
Toluene (7 - 76) 0.93 0.07 0.00 30
Formaldehyde (0.01 - v0) 0.93 0.06 0.01 27
Average, Tiers 2&3 0.85 0.15 0.00 369

Analyte at 25oC, 15000 ppm 
H2O -  48% RH Correct False Pos False Neg

Number 
of events

Acetone 0.94 0.06 0.00 31
DichloroMethane 0.77 0.23 0.00 31
Ethanol 0.90 0.10 0.00 31
Freon 218 0.79 0.19 0.02 62
Methanol 0.68 0.32 0.00 31
2-Propanol 0.90 0.10 0.00 31
Toluene 0.97 0.03 0.00 31
Formaldehyde 0.35 0.65 0.00 15
Average, Tiers 2&3 0.79 0.21 0.00 263

Analyte at  25oC, 20000 
ppm H2O -  64% RH Correct False Pos False Neg

Number 
of events

Acetone 0.90 0.10 0.00 31
DichloroMethane 0.63 0.37 0.00 62
Ethanol 0.90 0.10 0.00 31
Freon218 0.42 0.57 0.01 62
Methanol 0.87 0.11 0.02 62
2-Propanol 0.87 0.13 0.00 33
Toluene 0.90 0.10 0.00 31
Formaldehyde 0.46 0.53 0.01 30
Average, Tiers 2&3 0.74 0.25 0.01 342



The reasons for lower success rates at lower humidity 
with Tier 2 (organic) compounds are not clear. A model 
of sensor-analyte interaction developed under the JPL 
ENose program has shown that the interaction energy of 
an analyte with the  sensor matrix is decreased as water 
content in the sensor increases; it might therefore be 
expected that air with lower humidity, 5000 ppm water or 
RH about 20%, would result in better success rates than 
air with nominal humidity (about 40% RH) [10, 11].  
However, the data in Table 4 indicate that this is not the 
case.  It is possible that this phenomenon comes from 
the methods used to select the sensor set. Data used in 
selecting the polymer materials from which to make the 
sensors were taken at 10000 ppm water in air, and so 
the sensor set has been optimized for this humidity level.   
Future applications, where conditions might vary more 
than typical conditions on ISS, will have to take that 
variation into account in optimizing the sensor set.   

The model of sensor-analyte interaction also shows that 
the binding energy of analyte in a polymer sensor will 
decrease with rising temperature.  Even a modest rise in 
temperature is sufficient to prevent weak bonding such 
as hydrogen bonding between analyte and sensor. In 
fact, it is in part because of this ability of modest 
temperature increase to prevent weak bonding that the 
polymer sensors in the ENose are held at 28oC for 
sensing.  28oC is sufficient to prevent polymer sensors 
from becoming saturated in sorbed water under nominal 
humidity conditions.  However, because the ability of a 
polymer based sensor to detect analytes will be 
expected to fall off with increasing temperature, a 
balance between a sensor temperature high enough to 
prevent saturation in water and low enough to allow 
sorption of most analytes had to be found. In addition, it 
has been shown by other researchers that optimum 
sensing can be accomplished only if the environmental 
temperature (in this case temperature within the ENose) 
is lower than the temperature of the sensing surface 
[12]. For this reason, the temperature of the sensing 
chamber in the JPL ENose is controlled by a 
combination of thermoelectric devices and fans. 

FOLLOW PROGRESS OF CONTAMINATION 
EVENT 

In addition to identifying and quantifying the appearance 
of the analytes shown in Table 1, the function of the 
ENose includes following the progress of a 
contamination event.  That is, the ENose should show 
both the rise in concentration of a targeted analyte as it 
is released into the environment, and the fall in 
concentration as it is cleaned up.  The plots in Figures 2 
and 3 show how resistance changes over time as 
analyte is added to then removed from the environment. 

Figures 2 and 3 shows the development of resistance 
change data for eight sensors after analyte is let into the 
sensing chamber.  As seen in both figures, there is a 
period  of about 5 minutes after analyte is turned on at 
the vapor delivery system until the sensors show any 
response as change in resistance.  This lag time is 
systematic; it is the time it takes for the concentration 
gradient from the vapor delivery system to reach the 
sensing chamber and for analyte concentration to reach 
its maximum in the sensing chamber.  There is also a 
time constant for response related to each analyte and 
each sensor.  As can be seen by comparing the rise 
times for sensors in Figures 2 and 3, sensors respond 
more rapidly to ethanol than to toluene.  For these 30 
minute events, sensors do not always reach equilibrium 
to every analyte, as can be seen for Sensors 5 and 6 in 
Figure 3. 

After the analyte delivery is stopped, there is a period of 
about 10 minutes for the analyte to be flushed from the 
system; this period is reflected in a rapid but incomplete 
fall in sensor response after “analyte off.”  This region of 
the sensor response is used to track the diminishing 
concentration of a chemical species during a cleanup 
operation. The complete recovery of sensors after 
removal of analyte might take an additional 30 minutes 
after the environment is clean, as analyte desorbs from 
the polymer sensors; however, quantification of the 
sensor response in this region will show the analyte  
concentration to be below the lowest concentration to be 
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Figure 3:  Sensor response to 37 ppm toluene
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Figure 2:  Sensor response to 1083 ppm ethanol.



reported by the ENose. 

Analysis of the onset, maximum and decline in these two 
examples will follow the rise and fall shown in the plots, 
Table 4 shows analysis for the ethanol event shown in 
Figure 2. In the table, the single, overall event of the 
appearance of ethanol lasts from 662 minutes to 693 
minutes. The ethanol event is reported as four sub-
events; the first sub-event has a concentration of about 
900 ppm, the second a concentration about 1150 ppm, 
the third 900 ppm, and the fourth 349 ppm, showing the 
rise and fall of the appearance of ethanol in the 
environment. 

Table 4: Rise and Fall of Ethanol concentration as 
determined by ENose Data Analysis algorithm  

Event 
start 
(min) 

Event end 
(min) 

Analyte ID Analyte 
Conc. 
(ppm) 

652 663 Ethanol   900 
653 668 Ethanol   911 
653 672 Ethanol 1173 
653 676 Ethanol 1125 
653 680 Ethanol 1148 
653 684 Ethanol 1173 
653 689 Ethanol   900 
653 693 Ethanol   349 

 

CONCLUSION 

In a total of 1599 exposures, the overall success rate for 
Tier 1 species was 89%, and for Tiers 2&3, 80%, over all 
humidity and pressure conditions. Weighting the 
success rates for number of chemical species in each 
category, the overall success rate for identification and 
quantification of delivered species in training sets was 
83% over all conditions. 

Success rates at nominal conditions, environmental 
temperature of 21-22oC, with analyte temperature 
(sensing chamber temperature) at 25oC, and 10,000 
ppm water (about 40% RH), the success rate for Tier 1 
species was 93%, and for Tiers 2 & 3 was 85%.  The 
overall success rate for all species under nominal 
conditions was 87%. 

While, in general, success was improved at lower 
relative humidity, this was not true in all cases; nominal 
conditions provided the best success rates.  Future work 
will consider whether it is possible to optimize a sensor 
set over all conditions, so that success rate does not 
vary with water content of the background air. 
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