
An increasing demand for electronic in-
struments that can mimic human olfactory
processes and that may provide low-cost,
rapid sensory information to hasten the
process of odor evaluation for applications
such as food-quality assessment, environ-
mental monitoring, and even forensics has
led over the years to the conceptualization
of an “electronic nose.” This is defined as an
intelligent chemical sensor array system for
odor classification.1,2 Electronic nose sys-
tems, including the materials used to build
the sensing elements, device architecture,
and intelligent signal processing routines,
are the focus of this issue of MRS Bulletin.
Key developments in the domain of artifi-
cial olfaction are reviewed through the
contributions of leading experts in this field.
The most common sensor materials and
technologies used, those based on semi-
conducting oxides, polymers, and dyes,
are identified, and a variety of other types
of sensor materials and technologies, such
as electrochemical detectors used in “elec-
tronic tongues” (taste sensor arrays able 

to operate in liquid environments), are
discussed.

The importance of reviewing the state
of electronic nose and tongue technology
lies in the current need for advanced de-
tection devices for security (both civilian
and military) and health safety applica-
tions, such as the detection of explosives and
infection monitoring. Furthermore, the need
for biochemical detectors that are able to
sense the presence of pathogens in humans
and that can contribute to the early detection
of diseases is high.

Recently, medical applications of elec-
tronic noses have been explored. The use 
of a novel electronic nose to diagnose the
presence of pulmonary infection3,4 and dis-
tinguish between serum and cerebrospinal
fluid, as might be encountered in exudates
collected from the eye or ear, has been re-
ported.5 Osmetech has obtained approval
from the U.S. Food and Drug Administra-
tion to use its multiple-detector-based de-
vice for the detection of urinary tract
infections in patients and is currently

seeking approval for use of the device in
the diagnosis of bacterial vaginosis.6

Clearly, this field is still in its infancy,
and the opportunities for developing im-
proved biosensors are abundant. The 
diverse nature of their applications appeals
to the public in general. It is envisioned
that handheld electronic nose/tongue 
devices will be the health monitoring tech-
nology of the future, whereby physiological
functions may be continually monitored
through a simple exhaled breath or nasal-
expired air.

At the same time, novel materials such 
as chemoselective polymers and bio-
nanocomposites, carbon nanotubes, and
oxide nanobelts and nanowires have revo-
lutionized the field of biochemical sens-
ing.7–10 Nanoscience and nanotechnology
involve materials with dimensions in the
scale of 1–100 nm and rely on the size-
dependent properties of these materials.
For example, the high surface to volume
ratio of nanostructured materials favors
gas adsorption on these surfaces, thus en-
hancing the sensitivity of the sensor. Modi-
fications in the electronic structure of
nanoscale semiconductors can affect the
optimum temperature for gas sensing. By
employing these new materials, advanced
sensing systems are being developed that
are faster, more selective, and highly sen-
sitive to harmful chemical species and
“disease signaling” gases. The issue of the
chemical selectivity of each sensor compo-
nent is currently being compensated for
through the use of pattern recognition al-
gorithms and neural network routines
that process the signal from nonselective
sensing elements and define a spatial dis-
tribution of the electronic nose responses
to different types of chemicals.

Sensor Materials and Applications
for Electronic Noses and Tongues

Traditionally, gas analysis has relied 
on gas chromatography and mass spec-
troscopy (GC/MS) systems. GC/MS is used
to identify and quantify volatile and semi-
volatile organic compounds in complex
mixtures. Components of a chemical mix-
ture are separated in the gas chromato-
graph and identified by their respective
masses in the mass spectroscope. Organic
compounds must be dissolved in volatile
and organic solvents for injection into the gas
chromatograph. The duration of a gas chro-
matographic run is between 20–100 min,
and this is the instrument analysis time.
GC/MS may identify unknown organic
compounds by matching spectra collected
with reference spectra or by a priori spec-
tral interpretation. Data analysis can take
more than 20 h. Such analytical systems,
although accurate in identifying volatile
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organic compounds, are expensive and
bulky and require experienced operators,
whereas electronic noses and tongues offer
the promise of fast, reliable, portable gas-
sensing and/or liquid-detection systems
for user-friendly operation. Microfabri-
cated sensor arrays are currently built in
small, handheld devices. Each sensor re-
sponse varies from seconds to minutes.
Data processing can be simplified to pro-
vide a straightforward reading of the gas
chemistry and concentration or the quality
of the odorous mixture.

Metal Oxide Sensors
Semiconducting oxides have been the

preferred low-cost sensing elements for the
detection and monitoring of permanent
gases such as CO. They show high gas
sensitivity, fast response to the presence of
the gaseous analyte, and good long-term
stability. The detection process of oxidizing/
reducing gases by semiconducting metal
oxides involves the change in oxide con-
ductivity in the presence of the gas due to
catalytic reduction/oxidation reactions
occurring at the oxide surfaces.11 These
catalytic reactions are controlled by the
electronic structure of the oxide system
used, as well as by the chemical compo-
sition, crystal structure, and relative orien-
tation of the surfaces of the oxide
phase(s) exposed to the gas.12 There has
been evidence in the literature of selective
detection of a particular gaseous analyte
in the presence of interfering gas mixtures
(i.e., sensor selectivity),13,14 which is largely
determined by the chosen crystalline poly-
morph (specific crystallographic phase) of
a stoichiometric and pure metal oxide
used for sensing. For example, CO and
hydrocarbons are sensed by rutile-type
structures15 such as the polymorphs of
SnO2 and TiO2, while oxides with the pe-
rovskite structure may be used to sense
oxidizing gases with higher sensitivity.
Because a given crystal structure may be
sensitive to more than one gas, sensing
tests at different temperatures are typi-
cally carried out so as to identify the opti-
mum operating temperature for the
specific sensor.16 It is important to remain
within the phase stability field of the par-
ticular polymorph of the oxide to attain re-
liable and reproducible sensing properties.

The use of metal oxides in electronic
noses is discussed in this issue, in the ar-
ticle by Pardo and Sberveglieri. In this ar-
ticle, the authors review two case studies
in which the Pico electronic nose was used
for food-quality assessment and environ-
mental monitoring.

There is an increasing trend in chemical
sensing to utilize nanostructured oxides,
such as SnO2 nanobelts, as gas-sensing el-

ements.8 Nanocrystalline processing may
also be used to stabilize oxide polymorphs
that would otherwise be energetically un-
favorable under normal testing conditions,
such as the anatase phase of TiO2, as op-
posed to its stable rutile phase.17 For
resistive-type chemical sensors, it was ob-
served that the sensing properties, such as
response time and gas sensitivity, appeared
to improve when the size of the oxide par-
ticles was reduced.8,13

Polymer-Based Sensors
The most common gas-sensing elements

rely on sorption-based detector materials,
such as conductive polymers or com-
posites.18 The swelling of polymers due to
adsorbed chemical species can change the
electrical properties of conductive poly-
mers, as well as the oscillation frequency of
polymer-coated cantilever devices. Both
conductivity and oscillation frequency can
be used as analytical parameters; conduc-
tivity is discussed here, while oscillation is
covered in the “Other Sensor Materials and
Technologies” section. The principle of gas
detection by conductivity changes is the
adsorption of the volatile analytes on com-
posites consisting of a conductive matrix
blended with polymers for which the
analytes have variable affinities.19–21As the
analytes adsorb to the polymers, the di-
mensions of the composites change slightly,
resulting in small but detectable changes
in conductance. Various polymers, espe-
cially polyheterocycles such as poly-
pyrroles, have been employed for their
capacity to bind volatile analytes.

Although there are clearly differences in
the affinities of a number of gas-phase 
analytes for these polymers, there is little
absolute selectivity in the absorptive process
on which the detectors depend for record-
ing conductance changes. The responses
of these sensing materials depend on their
molecular volume, branching of the poly-
mer chain, hydrogen bonding, etc. It is not
clear yet what the effect of each of these
parameters is on gas selectivity. The absorp-
tive process has been likened to the associa-
tion of volatiles with an organic solid phase
in gas–liquid chromatography. Even with
the best-designed composites, the kinetics
of adsorption and desorption of the 
volatile analytes have half-lives on the order
of hundreds to thousands of seconds,
which suggest relatively long gas-detection
times.

Because the composites respond to ad-
sorbed volatile analytes by changes in 
dimensionality that lead to altered con-
ductance, the choice of polymers may be
compromised by the need to achieve a
conducting composite. One strategy em-
ploys polymers with some intrinsic con-

ductance (several of the polyheterocycles
have this property and are therefore favored
in the design of composites): this approach
limits the range of adsorptive selectivity.
Another approach22 employs nonconduc-
tive polymers, such as poly(4-vinylphenol),
poly(ethylene oxide), and ethyl cellulose,
blended with carbon black, which serves
as the conducting component of the com-
posite. Both strategies result in detectors
that are most sensitive to volatiles with a
relatively high vapor pressure, such as fatty
acids and related alcohols, rather than per-
manent gases such as methane, NO2, or 
CO. Some of the relatively high-vapor-
pressure organic acids and alcohols are
products of bacterial or yeast fermentation
and are therefore encountered in environ-
ments such as the headspace of vessels
used in winemaking.

The principles of polymer-based sensors
are discussed in this issue by Dutta et al.
This article describes a commercial elec-
tronic nose system based on polymer–carbon
black composite sensors. This technology
relies on a resistive-type detection mode that
senses the change in resistivity as the
polymer films swell. The detectors used in
this electronic nose are nonselective. Thus,
the sensor response is not correlated with
the concentration of a single gaseous species
(chemical compound), but is a combina-
tion of all the chemical information con-
tained in the sample, which in this case is
the “smell print” formed in the headspace
of bacteria solutions.

A different application field for polymer-
based sensors is reviewed by Ryan et al. In
this case, the application field is primarily
the space shuttle environment and space
habitats in general. Molecular modeling of
the sensor response is also covered in this
review.

Other Sensor Materials and
Technologies

The LibraNose is an example of an elec-
tronic nose based on eight quartz micro-
balance (QBM) sensor arrays coated with
metalloporphyrin compounds as the
chemically sensitive materials.23 The opera-
tion principle relies on the variation of the
fundamental oscillating frequency (� f ) of
a thin quartz crystal as a result of the ad-
sorption of gas analyte molecules on its
surface, which changes the oscillating
mass (�m) of the system, as described by
the Sauerbrey law.24 Good sensitivity was
obtained with this system for aromatic com-
pounds, amines, alcohols, and ketones. 
LibraNose was used for lung cancer iden-
tification by breath analysis in a study in-
volving 60 individuals.23 Certain volatile
compounds found in the exhaled human
breath of individuals with lung cancer,
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mostly alkenes and benzene derivatives, are
considered candidate markers of this dis-
ease. Di Natale et al.23 had their test subjects
breathe in a 4l volume disposable bag; the
sampled bags were then analyzed on-site
with the electronic nose. Using multivariate
data analysis to process the obtained data,
complete identification of the samples
from diseased individuals was possible.23

Polymer-coated cantilevers (e.g., micro-
fabricated beams of silicon) have been
considered for use as nanomechanical sen-
sor devices in detecting physical/chemical
interactions between the reactive layer on
the surface (a polymer film) and the envi-
ronment.25 Swelling of the polymer upon
interaction with volatile species forces 
the cantilever to bend because of surface
stresses when used in static mode. In dy-
namic mode, the cantilever acts as a micro-
balance driven at its resonance frequency.
Changes in mass as low as 1 pg (caused by
binding reactions) change the resonance
frequency of the oscillating cantilever. The
addition of biochemically active layers onto
the cantilever surface enables the monitor-
ing of mass changes during molecular-
recognition reactions.

The reliability of these sensing materials
depends on the precision in microfabrica-
tion that is required to form structures
with reproducibility in resonance frequen-
cies better than a few tenths of a percent.
Such cantilever array sensors (consisting of
eight polymer-coated cantilevers) were
used to detect acetone in exhaled air.25

Another electronic nose technology re-
viewed in this issue involves an optoelec-
tronic nose using colorimetric sensor arrays,
discussed here by Suslick. These colori-
metric sensors consist primarily of metal-
organic compounds deposited on porous
polymer membranes or other inert solid
supports. Metalloporphyrins in particular
are the sensing elements of choice in this
study. The reason for their selection is that
mammalian olfactory receptors are metallo-
proteins and most odorous compounds
are excellent ligands for metal ions. Their
chemical selectivity and sensitivity depend
on the nature of the central metal and pe-
ripheral constituents of the porphyrin
complex.26

Extending the use of electronic noses to
liquid environments, mass-sensitive devices
have also been used in electronic tongues.
This issue concludes with the article by
Winquist et al. reviewing the current state
of the art for electronic tongues. Special
emphasis is paid to electrochemical detec-
tors and voltammetric devices in particular.
Finally, emerging trends in taste sensors
include the application of spectroscopic
methods in the optical tongue paradigm of
Fourier transform infrared-based sensing.27

Pattern Recognition and
Multivariate Chemometric
Methods

Data analysis and recognition processes
are not usual areas for materials scientists to
focus their efforts in; however, these are key
aspects of electronic olfaction technology.
Electronic nose data analysis correlates each
tested sample to a vector in multidimen-
sional space by means of classical nonpara-
metric techniques. These are mathematical
procedures that make no assumptions about
the frequency distributions of the vari-
ables being assessed. Principal component
analysis (PCA) algorithms are used to
project the data sets into two dimensions
(principal components). In this way, maxi-
mum distinction performance between sub-
ject classes is achieved, as well-separated
clusters of measurements are projected in
principal component space.

In another approach, multivariate analy-
sis is used to extract the maximum amount
of information from the sensor array. Such
parametric statistical methods assume
that the distribution of the variables being
assessed have certain characteristics [e.g.,
analysis of variance (ANOVA) assumes that
the data obtained are normally distributed].

Artificial neural networks are also used
for further processing of the data from the
electronic noses for improving the analyte
identification rate. These networks consist
of hierarchically organized layers of infor-
mation processing elements similar to the
biological nervous system and have a learn-
ing ability that sets them apart from the
other classification methods.1,2 The articles
in this issue present the different levels of
complexity in the subject data analysis and
recognition process of electronic noses
and tongues.

Considering the future of electronic nose
technology, there are two approaches that
seem to naturally evolve. One is the use of
hybrid (or orthogonal) electronic olfaction
and taste systems composed of more than
one type of sensor (e.g., metal oxide-
resistive and polymer composite-resistive)
or arrays of hybrid sensing elements (e.g.,
chemoselective membranes deposited on
metal oxide sensing films). The second 
approach is to use small detector sets 
(2–3 sensor arrays) with high specificity,
targeted for a given application. In both
cases, emphasis is placed on improving
the semiselective nature of sensor mate-
rials and reducing the need for complex
algorithms for signal discrimination.

Nanotechnology is expected to have a
major impact on shaping the future of 
the fields of biochemical detection as new
materials, structures, and devices with im-
proved properties are developed. For ex-
ample, novel nanomanufacturing processes

such as electrospinning28 produce self-
standing pure or composite material nano-
structures (membranes) with high surface
areas for enhanced chemical attachment
of analyte species and biocatalytic proc-
esses that are suitable for on-line monitor-
ing and/or advanced power systems (e.g.
bio-fuel cells). Therefore, the electronic noses
of the future are envisioned to be tiny 
devices that will fit in a wristwatch or a
toothbrush that will alert us to health
problems and protect us from exposure to
allergens and pollutants. Similarly, minia-
turized electronic tongues will taste the
freshness of our food and the purity of the
water we drink. All of these devices will be
inexpensive and easy to operate. It is this
kind of improvement in human welfare
through novel technology that materials
scientists are striving for.
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